(3x)^2=9(9+16)

Simple and best practice solution for (3x)^2=9(9+16) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x)^2=9(9+16) equation:



(3x)^2=9(9+16)
We move all terms to the left:
(3x)^2-(9(9+16))=0
We add all the numbers together, and all the variables
3x^2-(925)=0
We add all the numbers together, and all the variables
3x^2-925=0
a = 3; b = 0; c = -925;
Δ = b2-4ac
Δ = 02-4·3·(-925)
Δ = 11100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{11100}=\sqrt{100*111}=\sqrt{100}*\sqrt{111}=10\sqrt{111}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{111}}{2*3}=\frac{0-10\sqrt{111}}{6} =-\frac{10\sqrt{111}}{6} =-\frac{5\sqrt{111}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{111}}{2*3}=\frac{0+10\sqrt{111}}{6} =\frac{10\sqrt{111}}{6} =\frac{5\sqrt{111}}{3} $

See similar equations:

| 2(x-4)²=98 | | (8x+7)+(5x+18)+(11x-4)+(10x+13)=360 | | -56(x-8)=8 | | 2x3/4=x5/8 | | 9(2x-1)+2(3x+4)=20x | | (E+5)x4=10 | | -18(x-10)=6 | | 3n+13=39 | | -(2p-2)=32 | | 1.6n+2=0.5(n+5) | | -16.2=x/7+1.3 | | 22-5/6x=-12 | | x/1.8=28.8 | | 2x-1-1/2(8x-6)=30 | | 8t+22−5t=37 | | a-5=10.5 | | 5+2x=3x+17 | | -3t+1=t=11 | | 5x+3=-3x+51 | | 3−6x=10x+8 | | 90=5w-10 | | 13x-8=-6x+30 | | 7.7x-5.7=63.6 | | 7x+3=3x–9 | | -3+5(x+)=47 | | (x*x)/((0.1-x)(0.3-x)(0.3-x)(0.3-x))=0 | | 3(4+2x)+x=2(x-1)-1 | | -9=39-11p-13p | | -4/7x-26=-15 | | 1/3∙b=4/5 | | -10.6=(m+11.7)÷0.5 | | -2c+6=48 |

Equations solver categories